Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(8): 75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969745

RESUMO

Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

2.
J Geophys Res Space Phys ; 127(12): e2022JA030721, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37032657

RESUMO

The properties and acceleration mechanisms of electrons (<200 keV) associated with a pair of tailward traveling flux ropes and accompanied reconnection X-lines in Earth's plasma sheet are investigated with MMS measurements. Energetic electrons are enhanced on both boundaries and core of the flux ropes. The power-law spectra of energetic electrons near the X-lines and in flux ropes are harder than those on flux rope boundaries. Theoretical calculations show that the highest energy of adiabatic electrons is a few keV around the X-lines, tens of keV immediately downstream of the X-lines, hundreds of keV on the flux rope boundaries, and a few MeV in the flux rope cores. The X-lines cause strong energy dissipation, which may generate the energetic electron beams around them. The enhanced electron parallel temperature can be caused by the curvature-driven Fermi acceleration and the parallel electric potential. Betatron acceleration due to the magnetic field compression is strong on flux rope boundaries, which enhances energetic electrons in the perpendicular direction. Electrons can be trapped between the flux rope pair due to mirror force and parallel electric potential. Electrostatic structures in the flux rope cores correspond to potential drops up to half of the electron temperature. The energetic electrons and the electron distribution functions in the flux rope cores are suggested to be transported from other dawn-dusk directions, which is a 3-dimensional effect. The acceleration and deceleration of the Betatron and Fermi processes appear alternately indicating that the magnetic field and plasma are turbulent around the flux ropes.

3.
Proc Natl Acad Sci U S A ; 117(17): 9232-9240, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32291339

RESUMO

Solar wind provides an example of a weakly collisional plasma expanding from a thermal source in the presence of spatially diverging magnetic-field lines. Observations show that in the inner heliosphere, the electron temperature declines with the distance approximately as [Formula: see text], which is significantly slower than the adiabatic expansion law [Formula: see text] Motivated by such observations, we propose a kinetic theory that addresses the nonadiabatic evolution of a nearly collisionless plasma expanding from a central thermal source. We concentrate on the dynamics of energetic electrons propagating along a radially diverging magnetic-flux tube. Due to conservation of their magnetic moments, the electrons form a beam collimated along the magnetic-field lines. Due to weak energy exchange with the background plasma, the beam population slowly loses its energy and heats the background plasma. We propose that no matter how weak the collisions are, at large enough distances from the source a universal regime of expansion is established where the electron temperature declines as [Formula: see text] This is close to the observed scaling of the electron temperature in the inner heliosphere. Our first-principle kinetic derivation may thus provide an explanation for the slower-than-adiabatic temperature decline in the solar wind. More broadly, it may be useful for describing magnetized collisionless winds from G-type stars.

4.
Phys Rev Lett ; 104(25): 255004, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867390

RESUMO

Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong guide-field regime. We find that the onset occurs asymmetrically: the reconnection begins on one side of the torus and propagates around approximately at the Alfvén speed. The fast reconnection occurs only in the presence of a global plasma mode, which breaks the axisymmetry and enables the current at the x line to decrease sharply. A simple semiempirical model is used to describe the onset's growth rate.

5.
Phys Rev Lett ; 101(1): 015003, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764120

RESUMO

We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or "blobs," arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by nabla B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting E x B flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...